

Particle Swarm Optimization based Image Retrieval using Relevance Feedback

Dr. M. Seetha Dr.K.Prasanna

Archers & Elevators Publishing House ISBN:978-81-19385-38-6

Particle Swarm Optimization based Image Retrieval using Relevance Feedback

Dr. M. Seetha,Professor and Head, Department of CSE,G. Narayanamma Institute of Technology & Science Shaikpet, Hyderabad.

Dr.K.Prasanna, Associate Professor, Department of Computer Science and Engineering(AI & ML), G. Narayanamma Institute of Technology & Science,Hyderabad

PREFACE

Content-based image retrieval (CBIR) is the set of techniques for searching for similar images from an image database using automatically extracted image features. RF increases the retrieval performance as it enables the system to learn what is relevant or irrelevant to the user across successive retrieval-feedback cycles. RF process is embedded into a stochastic optimization engine able to provide on one side a better exploration of the search space, and on the other side to avoid the stagnation in local minima. Besides introducing a deeper description and experimental analysis of the basic method, a new schema where the concept of swarm evolution with iterative swarm subdivision to allow a much more extensive exploration of the solution space, a faster and better convergence is introduced.

Understanding the subjective meaning of a visual query, by converting it into numerical parameters that can be extracted and compared by a computer, is the paramount challenge in the field of intelligent image retrieval, also referred to as the "semantic gap" problem. An innovative approach is proposed that combines a relevance feedback (RF) approach with an evolutionary stochastic algorithm, called particle swarm optimizer (PSO), as a way to grasp user's semantics through optimized iterative learning. The retrieval uses human interaction to achieve a twofold goal is to guide the swarm particles in the exploration of the solution space towards the cluster of relevant image and also to dynamically modify the feature space by appropriately weighting the descriptive features according to the users perception of relevance.

TABLE OF CONTENTS

Topic Name	Page No
1. Introduction 1.1 Content based image retrieval system	1
1.2 Existing System	2
1.2.1 Simple CBIR	2
1.2.2 CBIR with Relevance Feedback	3
1.3 Problem definition	4
1.4 Objective	4
1.5 Modules	5
1.6 Technologies used	5
1.6.1 Swings	6
1.6.2 MySql	8
1.6.3 Visual Paradigm	10
1.7 Datasets	10
1.8 Organization of report	11
2. Literature Survey	
2.1 Introduction	12
2.2 Basic Terminology	13
2.2.1 Semantic-Gap Problem	13
2.2.2 Content based image retrieval	14
2.2.3 Image Descriptors	14
2.2.4 Color Descriptors	15
2.2.5 Texture Descriptors	16
2.2.6 Shape Descriptors	17
2.2.7 Relevance Feedback	18
2.2.8 Canny Edge Detector	19
2.2.9 Particle Swarm Optimization	20
2.2.10 Precision and Recall	21
2.3 Methodologies	21

3. Requirements engineering

3.1 Hardware Requirements	23
3.2 Functional requirements	23
3.3 Non-functional requirements	23
3.3.1 Efficiency	23
3.3.2 Performance	24
3.4 Feasibility Study	24
3.4.1 Economic Feasibility	24
3.4.2 Operational Feasibility	24
3.4.3 Technical Feasibility	25
4. Design Engineering	
4.1 General	26
4.2 Use case diagram	26
4.3 Class diagram	27
4.4 Sequence diagram	29
4.5 Activity diagram	32
4.6 State diagram	33
4.7 Architecture diagram	34
5. Image Indexing	
5.1 Indexing Structures	35
5.2 Query Selection and Distance Calculation	35
5.3 Effectiveness Measures	36
6. Algorithms	
6.1 Canny Edge Detection Algorithm	38
6.1.1 Overview	38
6.1.2 Algorithm	43
6.13 Applications	43
6.2 Particle Swarm Optimization	43
6.2.1 Overview	43
6.2.2 Algorithm	44
6.2.3 Applications	45

7. Progressive Search	
7.1 User Feedback and Features Reweighting	47
7.2 Swarm Initialization and Fitness Evaluation	47
7.3 Evolution and Termination Criteria	48
8. Sample Code	
8.1 Canny Edge Detection Algorithm	49
8.2 Particle Swarm Optimization Algorithm	52
9. Results	
9.1General	53
9.2 Snapshots	53
9.2.1 Data-Feeder page	53
9.2.2 Database	55
9.2.3 PicFinder Page	56
10. Software testing	
10.1 General	60
10.2 Testing Types	60
10.3 Testing Strategies	61
10.3.1 Unit Testing	61
10.3.2 Functional Testing	61
10.3.3 Performance Test	63
10.3.4 Validation Testing	62
10.4 Guidelines for Developing Test cases	62
10.5 Test cases	63
11. Analysis	
11.1 Overview	66
11.2 Performance Comparison	68
12. Conclusions and Future Scope	
11.1 Conclusion	70
11.2 Future Enhancements	70
References	73